

Air Force Research Laboratory

Integrity **★** Service **★** Excellence

US Keynote Address: Current Problems in SSA and Required Areas of Research

07/19/12

By Moriba Jah¹⁾

¹⁾ Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico, United States

- Improve space object (SO) orbit determination and prediction, and characterization
 - Enhance orbital safety of operations
 - Exploit traditional and non-traditional data to maximize information (minimize ambiguity)
- Improved accuracy, better timeliness, and uncertainty (precision) realism are needed
 - SOs do collide with each other
 - SOs get lost or confused with others
 - SOs experience unknown dynamic effects (non-gravitational forces)
- Formed a consortium of astrodynamics expertise to solve these problems (ASTRIA)
 - AFRL/Space Vehicles Directorate
 - Thirteen universities, USAFA, AFIT, and NPS
 - Leveraging SBIR/STTR, SMART Fellowship, NDSEG Fellowship, NRC PostDoc Research Associateship, RD/RV Scholar, Air Force Summer Faculty Fellowship, Educational Partnership Agreements, AOARD/EOARD Grants

Advanced Sciences and Technology Research Institute for Astrodynamics*

<u>Charter:</u> Research entity combining government in-house and contractor expertise in astrodynamics with a consortium of universities performing research in relevant areas of interest to the U.S. Air Force Research Laboratory and Department of Defense.

Research Topics:

- •Data Association and Tracking
- Initial Orbit Determination
- •Maneuver Detection and Reconstruction
- Satellite Characterization
- •Data/Sensor Fusion for SSA
- •Orbital Debris Tracking and Characterization
- •Astrodynamics Applications to High Performance Computing

*Dr. Moriba Jah, Director

- Astrodynamics Tools:
- •General Mission Analysis Tool (GMAT)
- •Satellite Tool Kit (STK)
- •Orbit Determination Tool Kit (ODTK)
- •Goddard Trajectory Determination System (GTDS)
- •MATLAB (various analysis models and algorithms)

Current Academic Members:

- Purdue University
- University of Colorado, Boulder
- Texas A&M
- University of Texas , Austin
- State University of New York, Buffalo
- Utah State University
- Embry-Riddle Aeronautical University
- Missouri University of Science & Technology
- Penn State University
- Georgia Tech
- New Mexico State Univ.
- University of New Mexico
- Cal Poly SLO
- Rensselaer Polytechnic Institute
- Air Force Institute of Technology
- US Air Force Academy
- Naval Postgraduate School

What Hinders Our Ability To Do Better?

- State Vector
 - Sparse observations and no a priori information
 - Poor choice of coordinate-frame definition
 - Poor/unrealistic representation of associated uncertainty

Space Environment

- Lack of refinement (accuracy) in physics-based models given sparse observations and/or poor data assimilation/exploitation techniques
- Empirical/heuristic models have limited applicability and provide little-tono physical insight

Space Object Dynamics

- Lack of space object characteristics to properly model external force/torque behavior
 - Size, shape, material properties, inertia parameters, orientation, body rates
- Space Object Measurements
 - Poor characterization/understanding of errors including biases
 - No realistic/exhaustive quantification of data information content as it relates to observed objects
 - Robust and accurate data association to unique objects

State Vector Error Representation

Space Environment Interactions

We have little-to-no understanding of how the integrated effect of space environment drives the behavior of inactive space objects

Solar Radiation Flux

- Reflection
 - Specular and Diffuse
- Absorption
- Heat Transfer (thermal re-radiation via emissivity)
- Earth Radiation Flux
 - Significant for LEO objects
- Charged Particle Environment
 - Passive surface (including differential) charging interaction with magnetic field
- Material Aging/Degradation
- 3rd-Body Gravitational Effects
 - Jupiter's influence for long-term predictions of deep space objects
- Relativistic Effects

Size, Shape, Orientation, Material Properties...they matter!

DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution

- Example with Astrometric and Photometric Data Fusion
 - Astrometric angles data are very sensitive to the SO trajectory (translational dynamics) but fairly insensitive to SO characteristics (e.g. mass, orientation, materials, etc.) over short time spans
 - Photometric light curve data are very sensitive to SO characteristics but fairly insensitive to SO trajectory
 - These data types are complementary and orthogonal

Data Association

- Fixed-Gate vs Probabilistic
 - Fixed-Gate is simpler to implement but may lead to higher false associations
 - Probabilistic is only as good as how representative the uncertainty is of the true pdf, and for non-Gaussian pdfs where is the threshold?
- Kinematic-Only vs Feature-Aided
 - Each object is unique (different) in some way. Can we collect data that infers these differences with quantified ambiguity (e.g. brightness, multi-wavelength, optical cross-section, etc)?
- Effects of Stochastic (Residual) Biases
 - Aliasing of state vector; optimistic uncertainty can lead to solution divergence and mistags

• Effects of Sparse Observations

- Unrealsitic and/or too large of an uncertainty
- Insufficient information content to resolve ambiguity
- Relative Multi-Sensor Data Weighting
 - The information content in discrete sensor data is not the same as the combined/fused content
- Probability of Detection < 1
 - Sensor noise, effects of media, space object dependence

- Dynamical interaction and modeling of objects with the space environment
 - coupling between translational and rotational motion
 - full (high-fidelity and physics-based) effect of the natural environment on inactive space objects
- Advances in Space Object State and Parameter Inference
 - improved and problem-specific data collection/assimilation/exploitation techniques
 - investigation of applying information-theoretic and information fusion approaches
 - development and implementation of advanced space object identification and discrimination techniques based upon multiple hypothesis testing

Accurate and Realistic Prediction of Conjunctions/Collisions

- Development of realistic and quantifiable measures of space object ambiguity (uncertainty)
- Accurate and precise long-term 6+DOF trajectory propagations

Advanced Computational and Visualization Methods

- Exploitation of multiple processors and high performance computing
- Fast and accurate methods of numerical integration

- United Nations Committee On Peaceful Utilization of Outer Space (UN-COPUOS)
- Multi-lateral Agreements and Treaties
 - Trilateral Technology R&D Program (TTRDP)
 - USA, UK, Canada
 - NATO Panels
 - US Australia Bilateral agreements
- Air Force Office of Scientific Research
 - AOARD (Tokyo), EOARD (London), SOARD (Chile)
 - http://www.wpafb.af.mil/library/factsheets/factsheet.asp?id=9487

11