Автор Тема: Про нас пишут и наши интервью  (Прочитано 387233 раз)

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #780 : Сентябрь 04, 2022, 01:58:59 »
https://amostech.com/wp-content/uploads/2022/09/AMOS-2022-Program.pdf

AMOS Conference 2022
PROGRAM

The Use of OrbDetPy Open-Source Orbit Determination Software for Assessment of the Mission Extension Vehicle-2 Conditioned on Optical Measurements from the Russian-led International Scientific Optical Network (ISON)

Moriba Jah, The University of Texas at Austin **

????????????????

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #781 : Сентябрь 04, 2022, 02:05:19 »
https://spj.sciencemag.org/journals/space/2022/9865174/

LEO Mega Constellations: Review of Development, Impact, Surveillance, and Governance

Jingrui Zhang, Yifan Cai, Chenbao Xue, Zhirun Xue, and Han Cai

....
4.1.2. Ground-Based Optical Systems
.....
Russia’s ground-based optical systems rely on the Okno system and International Scientific Optical Observation Network (ISON), which are mainly used for the detection and identification of deep-space objects. In particular, the Okno system is capable of nighttime detection of space objects at orbital altitudes of 2000-40,000 km, and ISON allows the continuous surveillance of all GEO targets.

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #782 : Сентябрь 14, 2022, 02:01:02 »
https://poisknews.ru/international/vek-dobrososedstva-rossiya-i-mongoliya-privykli-sotrudnichat/

Век добрососедства. Россия и Монголия привыкли сотрудничать

.....
– Можно подробнее, скажем, по линии естественных наук…

– Например, группа исследователей Института космических исследований РАН под руководством Алексея Позаненко совместно с монгольскими коллегами из обсерватории Хурэлтогоот изучают нестационарные астрономические объекты в Солнечной системе – астероиды и кометы, даже движущийся в окрестностях Земли космический мусор. Проект способствует расширению мировых сетей слежения за потенциально опасными для нашей планеты астрофизическими образованиями. Плюс совместные команды погружаются в тайны космических гамма-всплесков, что важно для понимания ранней природы Вселенной.
.....

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #783 : Ноябрь 01, 2022, 01:30:29 »
Результаты работ по нашему российско-монгольскому гранту были включены в специальный выпуск Информационного бюллетеня РФФИ №2 2022 г с аннотациями лучших отчетов 2021 года

https://www.rfbr.ru/rffi/ru/books/o_2130405#13
« Последнее редактирование: Ноябрь 01, 2022, 01:32:09 от Игорь »

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #784 : Ноябрь 17, 2022, 02:08:58 »
https://iz.ru/export/google/amp/1425717

Российский астроном открыл сближающийся с Землей астероид

Неизвестный прежде астероид диаметром в несколько десятков метров, сближающийся с Землей, открыл накануне ночью российский астроном, научный сотрудник Института прикладной математики РАН Леонид Еленин. Об этом он сообщил «Известиям».

«Астероид 2022 VG2 открыт на российском 40-сантиметровом телескопе ОРИ-40, установленном в монгольской обсерватории Хурелтогот. Удаленно им управляю я, использую свой программный комплекс роботизированного управления обсерваторией», — рассказал специалист. По словам первооткрывателя, форму и массу астероида пока определить не удалось, а оценка его диаметра лежит в пределах 13–31 м. Как уточнил ученый, во время открытия блеск 2022 VG2 составлял 18-звездную величину — это средний показатель для астероидов и даже ближе к яркому. Чтобы увидеть объекты такого класса, нужны телескопы с камерами для накопления сигнала.

Комментируя его потенциальную опасность, Еленин отметил, что 2022 VG2 относится к астероидам, сближающимся с Землей (АСЗ) семейства Аполлона, то есть пересекающих орбиту нашей планеты.

«По текущей еще неточной орбите, можно сказать, что 2022 VG2 может сближаться с Землей до 850 тыс. км, но в текущем пролете он не подошел к нашей планете ближе чем 1,4 млн км. Так что реальной опасности не представляет», — пояснил астроном. Объект детектирован на рекордной угловой скорости — 50 угловых секунд в минуту. Прежде удавалось ловить объекты на порядок медленнее — 4–5 угловых секунд в минуту. Работу по поиску астероидов Еленин возобновил спустя несколько лет, с помощью новой более мощной наблюдательной программы. И буквально в самом начале работы ему улыбнулась удача. Обнаружив объект, ученый разместил данные на странице подтверждения NEOCP, и он моментально был подхвачен десятком обсерваторий России, Германии, Италии, Чехии, Словакии и США. Объект идентифицирован Центром малых планет по каталогу всех известных астероидов MPCORB.Для Еленина астероид 2022 VG2 — это 15-й открытый околоземной астроид, что составляет 40% от общего числа подобных объектов, открытых астрономами СССР и России.

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #785 : Ноябрь 17, 2022, 02:16:38 »
https://news.rambler.ru/science/49698633-rossiyskiy-astronom-otkryl-sblizhayuschiysya-s-zemley-asteroid/

Российский астроном открыл сближающийся с Землей астероид

Объект был открыт астрономом Леонидом Елениным при блеске 18m и угловой скорости 49,5 угловых секунды в минуту, что является рекордом для «российских» астероидов, сближающихся с Землей (АСЗ). Открытие уже официально зарегистрировано. Новый околоземной астероид семейства Аполлона получил обозначение 2022 VG2.Это небольшой астероид диаметром от 13 до 31 метра, который максимально сблизился с Землей 13 ноября в 02:20 UT до 1,44 миллиона километров. Объект было обнаружен лишь сутки спустя уже на отлетной траектории российским телескопом, установленным в обсерватории ISON-Hureltogoot (Монголия). После размещения нового объекта на странице подтверждения NEOCP он был подхвачен десятком обсерваторий из России, Германии, Италии, Чехии, Словакии и США.Это 15-й околоземной астероид Леонида Еленина, что составляет 40% от всех АСЗ, открытых астрономами СССР и России.

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #786 : Ноябрь 17, 2022, 15:26:19 »
Видеосюжет - интервью с Леонидом.

https://ren.tv/player/video/embed/1046901#autoplay=1;

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #787 : Февраль 03, 2023, 00:09:23 »
https://www.frontiersin.org/articles/10.3389/fspas.2022.896570/full

CHES robotic observation software kit

Introduction
Telescope networks and robotic techniques

The International Scientific Optical Network (ISON) (Molotov et al., 2008) from KIAM is a very successful global optical telescope network with more than 30 telescopes at more than 20 sites which focus on near-Earth asteroids, space debris, and gamma-ray burst. KDS Polaris is its integrated telescope control system (TCS) written in C# for high-performance, fully automated observation within the framework of the survey program for searching small bodies in the solar system, observation for target designation (both asteroids and comets and space debris in the Earth orbit), as well as for alert (urgent) observation of short-lived optical transients, such as optical components of gamma-ray bursts afterglow. In addition, another Python-based distributed client–server architecture TCS Forte (Kouprianov and Molotov, 2017) is developed to enable extreme flexibility and scalability to a wide range of sensor apertures and configurations.

Molotov, I., Agapov, V., Titenko, V., Khutorovsky, Z., Burtsev, Y., Guseva, I., et al. (2008). International scientific optical network for space debris research. Adv. Space Res. 41, 1022–1028. doi:10.1016/j.asr.2007.04.048

Kouprianov, V., and Molotov, I. (2017). Forte : Ison robotic telescope control software, 18–21.
« Последнее редактирование: Февраль 03, 2023, 00:11:19 от Игорь »

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #788 : Февраль 03, 2023, 00:26:40 »
https://www.lse.ac.uk/ideas/projects/space-policy/publications/Understanding-Growth-in-the-Global-Space-Situational-Awareness-Sector

Understanding Growth in the Global Space Situational Awareness Sector

....

the Russian-led International Scientific Optical Network (ISON) have also built a cluster of partnerships, both of which include nations not well connected to other parts of the network.

Quantitative analysis of the network focuses on four different types of measurements of centrality. The first, degree centrality, is calculated based on the total number of edges connected to each node. High degree centrality is typically associated with innovation and influence.
ISON comes in sixth on this list.

Out-degree centrality is particularly important for measuring influence within the network. The entities that are sending data and information out to others help to establish those entities’ understanding of the space environment. An entity that provides information to a large number of entities will be able to create a shared understanding of the space environment among a larger community of actors, enabling smoother coordination of space traffic issues and more rapid agreement on issues such as attribution.
The Russian-led ISON jumps to number five.

Betweenness centrality measures the number of times a node lies on the shortest path between two other nodes. Entities with a high betweenness centrality often act as bridges within a network, partnering with diverse entities and providing unique connections.
ISON jumps to second place in this measure

https://www.lse.ac.uk/ideas/Assets/Images/Space-Policy/SSA.png
Fig. 1. Network diagram of the global space situational awareness sector in 2020. This network diagram includes 74 nodes, with colors distinguishing government, commercial, international, and nonprofit organizations within the global SSA sector. The diagram also includes 274 edges, representing data flows among these entities.

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #789 : Март 14, 2023, 04:32:03 »
https://idstch.com/space/biggest-land-and-space-telescopes-in-optical-infrared-and-radio-of-the-world/

Biggest land and space telescopes in optical, infrared and radio of the world

January 24, 2023

https://youtu.be/VZObUQTUnvs

.....

When considering only ground-based optical telescopes, the trade space ranges from large networks od small telescopes to small networks (or single copies} of large telescopes. The Russian International Scientific Optical Network (ISON) network represents an axellent example of a large network of what are mostly smaller telescopes. ISON has a very interesting mix of telescopes and optical designs, but most of their assets are in the Pacific Ocean.

Given that the ISON telescopes are generally smaller in aperture, they are limited to observing GEO satellites in the 15th to 16th magnitude range. Small telescopes are extremely inexpensive and can easily be deployed to remote locations, provided power and communications are available. Small telescopes often have very wide fileds of view allowing them to rapidly scan the entire visible GEO belt several times each night.

The GEODSS network represents an example of a small number of medium aperture telescopes. With an aperture of 1 m the telescopes are more sensitive than most in ISON, but with only three operational locations, GEODSS leaves parts of the GEO belt without coverage.

« Последнее редактирование: Март 14, 2023, 04:35:38 от Игорь »

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #790 : Сентябрь 26, 2023, 18:46:19 »
https://scitechdaily.com/optical-observations-of-bepicolombo-spacecraft-as-a-proxy-for-a-potential-threatening-asteroid/

Optical Observations of BepiColombo Spacecraft as a Proxy for a Potential Threatening Asteroid

BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) designed to study the planet Mercury. Launched in late 2018, its complex trajectory involved a fly-by past Earth on April 10, 2020. We took advantage of the event to organize a coordinated observing campaign. The main goal was to compute and compare the observed fly-by orbit properties with the values available from the Mission Control. The method we designed could then be improved for future observation campaigns targeting natural objects that may collide with our planet.

The incoming trajectory of the probe limited the ground-based observability to only a few hours, around the time when it was closest to Earth. The network of telescopes we used has been developed by ESA’s NEO Coordination Centre (NEOCC) with capabilities to quickly observe imminent impactors, thus presenting similar orbits. Our team successfully acquired the target with various instruments such as the 6ROADS Chilean telescope, the 1.0 m Zadko telescope in Australia, the ISON network of telescopes, and the 1.2 m Kryoneri telescope in Corinthia, Greece.

The observations were difficult due to the object’s extremely fast angular motion in the sky. At one point, the telescopes saw the probe covering twice the size of the moon in the sky each minute. This challenged the tracking capabilities and timing accuracy of the telescopes. Each telescope was moving at the predicted instantaneous speed of the target while taking images, “tracking” the spacecraft. Field stars appeared as trails, while BepiColombo itself was a point source, but only if the observation started exactly at the right moment. Because the probe was moving so fast, any date errors of the telescope images translate into position errors of the probe. To reach a precise measurement of 0.1 meters, the date of the images needed to have a precision of 100 milliseconds.

The final results were condensed into two measurable quantities that could be directly compared with the Mission Control ones, the perigee distance, and the time of the probe’s closest approach to Earth. Both numbers were perfectly matched, proving our method a success: it calculated a more accurate prediction of BepiColombo’s orbit; it also provided valuable insights for future observations of objects colliding with Earth:

    A purely optical observing campaign can provide trajectory information during a fly-by at sub-kilometer and sub-second levels of precision.
    A similar campaign would lead to a sub-kilometer and sub-second precision for the time and location of the atmospheric entry of any colliding object.
    Timing accuracy below 100 milliseconds is crucial for the closest observations.
    It’s possible to organize astrometric campaigns with coverage from nearly every continent.

Игорь

  • Администратор
  • Старожил
  • *
  • Сообщений: 56734
Re: Про нас пишут и наши интервью
« Ответ #791 : Декабрь 07, 2023, 13:26:20 »
JK DeSimone Диссертация
Using Commercial Space Situational Awareness as a Verification Mechanism for Orbital Debris Mitigation
https://apps.dtic.mil/sti/trecms/pdf/AD1150918.pdf  (скачивать из под vpn)

стр. 21

B. OVERVIEW OF INTERNATIONAL AND SCIENTIFIC COMMUNITY SSA SYSTEMS
This section will discuss major non-commercial international and scientific community SSA systems. Some SSA systems are global and some are regional.

While the Russian military’s Space Surveillance System is secretive, Russia is a leader in international cooperation through the International Scientific Optical Network (ISON). ISON started in 2004 as a voluntary international project for scientific and academic institutions to develop “an independent open source of data for scientific analysis and spacecraft operators.”[47] As its name suggests, it operates a network of optical sensors only. As of 2019, ISON collected measurements from 43 observation facilities with access to more than 100 telescopes in 17 countries across the globe.[48]

ISON is organized by the Russian Academy of Sciences (RAS) in Moscow, and it is organized into three segments. Each segment has its own scheduling center and sources of finance. First, the Keldysh Institute of Applied Mathematics (KIAM) coordinates ISON’s activities, processes collected measurements, and provides various space operations services. The second segment is called Roscosmos. More accurately, the second segment is KIAM’s support to Roscosmos. The KIAM supports Roscosmos with its daily operations and conjunction warnings. The third is Vimpel, which is commercial-oriented. Altogether, these three segments make up ISON.

ISON has partners across the globe with varying levels of cooperation. According to a February 2020 presentation from the KIAM RAS’ Igor Molotov to COPUOS, there are three broad levels of cooperation with ISON: international cooperation, informal collaboration, and cooperation of observatories.[50] Organizations part of the international cooperation include the Zimmerwald Observatory in Switzerland, the Barcelona Observatory in Spain, and the Cosala Observatory in Mexico. ISON also collaborates informally with NASA’s Jet Propulsion Laboratory (JPL) in the United States. (???) The cooperation of observatories category included observatories from Georgia, Bulgaria, and Kazakhstan. Figure 4 depicts the locations of ISON’s telescopes and observatories around the world.

International cooperation is expected to grow through the UN’s access to Space for All Initiative, a partnership between ISON and the United Nations Office for Outer Space Affairs (UNOOSA). Announced in January 2020, UNOOSA and KIAM RAS planned to offer select academic and research institutions in developing countries 20 cm aperture telescopes and training on using them.[51] The Access to Space for All Initiative aims to share technology and grow ISON. The applications for these two opportunities to receive the telescopes and training are open until July 2021. The winners will be selected in October 2021.

A variety of telescopes contribute SSA data to ISON. Of the over 100 telescopes that are part of ISON, details for only about half are publicly available. ISON’s sensors include: 30 telescopes with 20 cm to 40 cm apertures, 12 telescopes with 50 cm to 80 cm apertures, and 10 telescopes with 60 cm to 2.6 m apertures.[53] ISON conducts six types of observations:
1. Standard GEO survey with 22 to 25 cm telescopes
2. Extended GEO survey with 18 to 19.2 cm telescopes
3. Deep GEO survey with 50 to 75 cm telescopes
4. Bright GEO and HEO objects with 25 cm telescopes
5. Faint space debris at GEO with 40 to 80 cm telescopes
6. Photometry observations of asteroids with 40 cm to 2.6 m telescopes.[54]

In 2017, the telescope network collected 20.048 million measurements and cataloged 6,740 objects.[55] This catalog is much smaller than the United States’ SATCAT because ISON’s catalog primarily accounts for GEO and HEO orbits. However, ISON collected data on 2,863 objects that are not in the SATCAT and do not have TLE information.[56] The numbers of measurements and objects are expected to grow as ISON continues to mature and add new sensors.

While data is collected globally, it is processed and analyzed by the KIAM. The RAS established the Center on Collection, Processing, and Analysis of Information on Space Debris (CCPAISD) at the KIAM. The CCPAISD schedules ISON’s sensors, processes raw measurements, and maintains ISON’s master database of space objects. As mentioned, the CCPAISD’s catalog focuses its analysis primarily on objects in GEO and HEO.[57] The catalog is available on the website spacedata.vimpel.ru. The KIAM provides products in the following fields:
1. Estimation of real population of space debris at high geocentric orbits
2. Determination of physical properties of discovered space debris objects
3. Determination of probable sources of newly discovered space debris fragments
4. Verification of existing evolution models of space debris distribution
5. High orbit space debris risk assessment
6. Improvement of technologies of studying of space debris population using optical instruments
7. Improvement of motion models for space debris objects with complex physical properties. [58]

The KIAM also provides services dedicated to Roscosmos. Using ISON data, the joint Roscosmos and KIAM project “Automated System for Prediction and Warning on the hazardous situations in the near-Earth space” (ASPOS OKP) provides conjunction analysis and support for daily operations for Russian satellite operators.[59]
For future development, ISON intends to increase international cooperation through its partnership with the United Nations. As for data processing, ISON plans to improve its software.[60] In 2017, the Secure World Foundation determined that ISON had grown closer to the Russian government.[61] Russia’s skeptics may be concerned about transparency with the Russian government’s growing involvement in ISON.

Molotov, I., M. Zakhvatkin, L. Elenin, L. Canals Ros, F. Graziani, P. Teofilatto, T. Schildknecht et al. “ISON Network Tracking of Space Debris: Current Status and Achievements.” In Revista Mexicana de Astronomía y Astrofísica Serie de Conferencias, 51:144–49. Huelva, 2017. https://doi.org/10.22201/ia.14052059p.2019.51.25.

Molotov, Igor. “International Cooperation in Field of Observations of the Near-Earth Objects Within ISON Project.” Presentation presented at the Fifty-seventh session of Scientific and Technical Subcommittee COPUOS, Vienna, February 3, 2020.

United Nations Office for Outer Space Affairs. “Access to Space for All ISONscope.” Presentation, January 27, 2021. https://www.unoosa.org/documents/pdf/psa/bssi/KIAM/Detailed_explanation_of_Announcement_of_Opportunity_and_Application_Form.pdf.

Figure 4. ISON Telescopes and Observatories