JK DeSimone Диссертация
Using Commercial Space Situational Awareness as a Verification Mechanism for Orbital Debris Mitigation
https://apps.dtic.mil/sti/trecms/pdf/AD1150918.pdf (скачивать из под vpn)
стр. 21
B. OVERVIEW OF INTERNATIONAL AND SCIENTIFIC COMMUNITY SSA SYSTEMS
This section will discuss major non-commercial international and scientific community SSA systems. Some SSA systems are global and some are regional.
While the Russian military’s Space Surveillance System is secretive, Russia is a leader in international cooperation through the International Scientific Optical Network (ISON). ISON started in 2004 as a voluntary international project for scientific and academic institutions to develop “an independent open source of data for scientific analysis and spacecraft operators.”[47] As its name suggests, it operates a network of optical sensors only. As of 2019, ISON collected measurements from 43 observation facilities with access to more than 100 telescopes in 17 countries across the globe.[48]
ISON is organized by the Russian Academy of Sciences (RAS) in Moscow, and it is organized into three segments. Each segment has its own scheduling center and sources of finance. First, the Keldysh Institute of Applied Mathematics (KIAM) coordinates ISON’s activities, processes collected measurements, and provides various space operations services. The second segment is called Roscosmos. More accurately, the second segment is KIAM’s support to Roscosmos. The KIAM supports Roscosmos with its daily operations and conjunction warnings. The third is Vimpel, which is commercial-oriented. Altogether, these three segments make up ISON.
ISON has partners across the globe with varying levels of cooperation. According to a February 2020 presentation from the KIAM RAS’
Igor Molotov to COPUOS, there are three broad levels of cooperation with ISON: international cooperation, informal collaboration, and cooperation of observatories.[50] Organizations part of the international cooperation include the Zimmerwald Observatory in Switzerland, the Barcelona Observatory in Spain, and the Cosala Observatory in Mexico. ISON also collaborates informally with NASA’s Jet Propulsion Laboratory (JPL) in the United States.
() The cooperation of observatories category included observatories from Georgia, Bulgaria, and Kazakhstan. Figure 4 depicts the locations of ISON’s telescopes and observatories around the world.
International cooperation is expected to grow through the UN’s access to Space for All Initiative, a partnership between ISON and the United Nations Office for Outer Space Affairs (UNOOSA). Announced in January 2020, UNOOSA and KIAM RAS planned to offer select academic and research institutions in developing countries 20 cm aperture telescopes and training on using them.[51] The Access to Space for All Initiative aims to share technology and grow ISON. The applications for these two opportunities to receive the telescopes and training are open until July 2021. The winners will be selected in October 2021.
A variety of telescopes contribute SSA data to ISON. Of the over 100 telescopes that are part of ISON, details for only about half are publicly available. ISON’s sensors include: 30 telescopes with 20 cm to 40 cm apertures, 12 telescopes with 50 cm to 80 cm apertures, and 10 telescopes with 60 cm to 2.6 m apertures.[53] ISON conducts six types of observations:
1. Standard GEO survey with 22 to 25 cm telescopes
2. Extended GEO survey with 18 to 19.2 cm telescopes
3. Deep GEO survey with 50 to 75 cm telescopes
4. Bright GEO and HEO objects with 25 cm telescopes
5. Faint space debris at GEO with 40 to 80 cm telescopes
6. Photometry observations of asteroids with 40 cm to 2.6 m telescopes.[54]
In 2017, the telescope network collected 20.048 million measurements and cataloged 6,740 objects.[55] This catalog is much smaller than the United States’ SATCAT because ISON’s catalog primarily accounts for GEO and HEO orbits. However,
ISON collected data on 2,863 objects that are not in the SATCAT and do not have TLE information.[56] The numbers of measurements and objects are expected to grow as ISON continues to mature and add new sensors.
While data is collected globally, it is processed and analyzed by the KIAM. The RAS established the Center on Collection, Processing, and Analysis of Information on Space Debris (CCPAISD) at the KIAM. The CCPAISD schedules ISON’s sensors, processes raw measurements, and maintains ISON’s master database of space objects. As mentioned, the CCPAISD’s catalog focuses its analysis primarily on objects in GEO and HEO.[57]
The catalog is available on the website spacedata.vimpel.ru. The KIAM provides products in the following fields:
1. Estimation of real population of space debris at high geocentric orbits
2. Determination of physical properties of discovered space debris objects
3. Determination of probable sources of newly discovered space debris fragments
4. Verification of existing evolution models of space debris distribution
5. High orbit space debris risk assessment
6. Improvement of technologies of studying of space debris population using optical instruments
7. Improvement of motion models for space debris objects with complex physical properties. [58]
The KIAM also provides services dedicated to Roscosmos. Using ISON data, the joint Roscosmos and KIAM project “Automated System for Prediction and Warning on the hazardous situations in the near-Earth space” (ASPOS OKP) provides conjunction analysis and support for daily operations for Russian satellite operators.[59]
For future development, ISON intends to increase international cooperation through its partnership with the United Nations. As for data processing, ISON plans to improve its software.[60] In 2017, the Secure World Foundation determined that ISON had grown closer to the Russian government.[61] Russia’s skeptics may be concerned about transparency with the Russian government’s growing involvement in ISON.
Molotov, I., M. Zakhvatkin, L. Elenin, L. Canals Ros, F. Graziani, P. Teofilatto, T. Schildknecht et al. “ISON Network Tracking of Space Debris: Current Status and Achievements.” In Revista Mexicana de Astronomía y Astrofísica Serie de Conferencias, 51:144–49. Huelva, 2017.
https://doi.org/10.22201/ia.14052059p.2019.51.25.
Molotov, Igor. “International Cooperation in Field of Observations of the Near-Earth Objects Within ISON Project.” Presentation presented at the Fifty-seventh session of Scientific and Technical Subcommittee COPUOS, Vienna, February 3, 2020.
United Nations Office for Outer Space Affairs. “Access to Space for All ISONscope.” Presentation, January 27, 2021.
https://www.unoosa.org/documents/pdf/psa/bssi/KIAM/Detailed_explanation_of_Announcement_of_Opportunity_and_Application_Form.pdf.
Figure 4. ISON Telescopes and Observatories